sJURyq%uTKGVGyPsw1zplw
Unknown
Dr Karl discusses the VFD
Prime minister Malcolm Turnbull
IMG_1801
Greg Weiss and Colin Ralston
IG Nobel prize ceremony
Unknown
Presentation1_edited
Professor Colin Raston and the VFD
Welcome

 

Welcome to the Raston Lab website. Here you will find everything from personal information on Colin and his team, to current areas of research, publications, patents and information on how to get involved.

 

The Raston Lab is situated in South Australia at Flinders University. We specialize in thin film flow chemistry delivering new methodology in both synthetic flow chemistry and materials chemistry. Visitors from both an academic and industrial background are welcome to get in touch.

News, videos and featured articles

Raston Lab awarded at ISHHC18

Photographed is Lab member Scott Pye receiving a (shared) 2nd prize, for best poster at the recent ISHHC18 (International Symposioim on Relations between Homogenous and Heterogenous Catalysis, 2018).

The presented work was on continuous flow olefin metathesis, a collaboration between the Raston Lab and Justin Chalker.

Thanks to RACI, RSC and Springer for hosting the awards.

ChemComm Journal Inside Front Cover

Recent work from the group, in assembling C60 fullerenes into cones! This work was featured in the inside front cover of the RSC journal Chemical Communications.

Too see the cover and read the article, follow this link:

Recent Publications

G. Oksdath-Mansilla et al., Azide–alkyne cycloadditions in a vortex fluidic device: enhanced “on water” effects and catalysis in flow. Chemical Communications 57, 659-662, 2021. 

X. Cao et al., Vortex fluidics mediated non-covalent physical entanglement of tannic acid and gelatin for entrapment of nutrients. Food & Function 12, 1087-1096, 2021.

S. J. Pye et al.,  Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts. Australian Journal of Chemistry 73, 1138-1143, 2020.

X. Luo et al., Vortex Fluidic-Mediated Fabrication of Fast Gelated Silica Hydrogels with Embedded Laccase Nanoflowers for Real-Time Biosensing under Flow. ACS Applied Materials & Interfaces 12, 51999-52007, 2020.

Featured Synthetic Methodology
 
G. Oksdath-Mansilla et al., Azide–alkyne cycloadditions in a vortex fluidic device: enhanced “on water” effects and catalysis in flow. Chemical Communications 57, 659-662, 2021. 
S. J. Pye et al.,  Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts. Australian Journal of Chemistry 73, 1138-1143, 2020.
 
A. Igder et al., Vortex fluidic mediated synthesis of polysulfone. RSC Advances 10, 14761-14767, 2020.
J.M Phillips et. al., Chemoselective and Continuous Flow Hydrogenation in Thin Films Using a Palladium Nanoparticle Catalyst Embedded in Cellulose Paper. ACS App. Bio Mat. 2019, 2, 1, 488-494

Featured Materials Methodology

 

S. Rahpeima et al., Reduced graphene oxide–silicon interface involving direct Si–O bonding as a conductive and mechanical stable ohmic contact. Chemical Communications 56, 6209-6212, 2020.

I. K. Alsulam et al., High-Yield Continuous-Flow Synthesis of Spheroidal C60@Graphene Composites as Supercapacitors. ACS Omega 4, 19279-19286, 2019. 

T. M. D. Alharbi et al. High Yielding Fabrication of Magnetically Responsive Coiled Single-Walled Carbon Nanotube under Flow. ACS Applied Nano Materials 2, 5282-5289, 2019.

K. Vimalanathan et al., Vortex fluidic mediated transformation of graphite into highly conducting graphene scrolls. Nanoscale Advances 1, 2495-2501, 2019. 

Featured Application Methodology
J. Tavakoli et al.,Vortex fluidic mediated one-step fabrication of polyvinyl alcohol hydrogel films with tunable surface morphologies and enhanced self-healing properties. Science China Materials 63, 1310-1317, 2020.
J. Tavakoli et al.,  Vortex fluidic enabling and significantly boosting light intensity of graphene oxide with aggregation induced emission luminogen. Materials Chemistry Frontiers 4, 2126-2130, 2020.
S. He et al., Vortex fluidic mediated food processing. PLOS ONE 14, e0216816, 2019.
S. He et al., Continuous flow thin film microfluidic mediated nano-encapsulation of fish oil. LWT 103, 88-93, 2019.
 

Recent Tweets

Chemical Society Reviews Journal Cover

 

The recent review by J. Britton and C. Raston, "Multi-step Continuous-flow Synthesis" is featured on the back cover in Chem. Soc. Rev. issue 5, 2017.

To see the cover and read the paper, follow this link:

BBC News story "Machine that 'unboils' eggs may help fight cancer"

 

A machine that can "unboil" protein-rich egg whites, winning an Ig Nobel Prize in 2015, may also have important medical applications, its inventor says...

ABC catalyst special on the VFD, "UNBOILING AN EGG!"

 

Unboiling an egg’ technology leads to new discoveries in renewable energy. You can’t unboil an egg, right? Wrong! Scientists from Flinders University in SA won an Ig Nobel Prize for successfully unboiling an egg. The technology....

Increasing anti-cancer activity with thin film flow chemistry!

 

With ovarian cancer, we found that this technology can increase the loading of second generation anti-cancer carboplatin drugs into delivery vehicles from 17 per cent to 75 per cent. This not only would have a direct benefit of reducing the negative side-effects which affect patient health, but of being able to use less of the drug.

An Assembly Line Approach to the Synthesis of local anethetic Lidocaine in Flow!

 


The total synthesis of Lidocaine was accamplished using new synthetic methodology in flow. An Assembly line approach to this molecule inspired new flow methodology. Lidocaine, amides, ureas and modified amino acids were also synthesised in flow with yields enhanced compared to batch.

Machine that 'uncooks eggs' used to improve cancer treatment

 

A machine invented by an Australian scientist that can "unboil an egg" by unfolding the proteins in egg whites back to their natural state has been hailed as a potential game-changer for the targeted delivery of chemotherapy drugs for cancer treatment.

Chemical Communications interview with Colin

 

Chem Comm probe what it is that makes Colin tick and what he plans to be doing when he is 100 years old.

© 2017 - The Raston Lab

Site Editor: Matt Jellicoe, Matt.Jellicoe@flinders.edu.au